Call Us Icon Email Us Icon

5 Data Entry Errors Companies Should Avoid to Improve Accuracy

5 Data Entry Errors Companies Should Avoid to Improve Accuracy
Data entry errors leading to erroneous databases prove disastrous to the success and profitability of any organization.

Though the thrust on quality data has heated up board room discussions for long, businesses continue to fail miserably in improving data entry accuracy. Priorities to core business activities, lack of skilled professionals or minimal exposure to advanced data management tools, technology & expertise are the impediments.

How data quality proves costly to companies?

Impact of Inaccurate Data

Common data entry errors result into data quality problems. Erroneous decisions based on poor quality data not only create inconvenience, but also prove extremely costly. Inaccurate data continues accumulating, especially when no one is using it regularly. With technological advancements, several companies make decisions based on bad data without realizing its consequences. Poor data quality costs nearly $9.7 million per year to organizations across the globe, says Gartner. In the US alone, businesses tend to loose approx. $3.1 trillion annually due to poor data quality.

Small and medium businesses, in the bid to manage growing data, somehow increase the speed of data entry but fail miserably in reducing common data entry errors to improve accuracy and overall data quality. Poor quality of business data more than often carries heavy costs in terms of financial, productivity, missed opportunities and damaged brand image. Unfortunately, organizations that don’t make efforts, never realize the hidden cost of poor data quality.

Do companies take data entry job seriously?

Benefits of Accurate Data

Companies make numerous efforts and invest millions of dollars in deriving and developing data management strategies. But usually these strategies are developed in and around incurring robust data management software, observing daily data transactions to reduce data redundancy, security of data in form of backup and overall storage as well.

Similarly, hefty dollars are spent to accrue extensive technology for data warehouse, data mart, and data mining. It helps them conveniently access the data, though inaccurate; anytime and anywhere. But all these developmental moves are made in and around increasing the efficiency of collecting data, and secured storage of data. No measures are taken to eliminate data entry errors and improve the accuracy of data and organizations are struggling to find answers to:

What is data entry error?

Information entered in the wrong way or order. It is common like typing words rather than numerical data or numbers rather than words. Common data entry mistakes are transcription errors & transposition errors.

How to avoid common data entry errors?

  • Prioritize accuracy over speed
  • Double-check all data entries
  • Use software tools to automate as many processes
  • Train employees on the importance of accurate data
  • Provide good working environment that promotes focus
  • Hire sufficient workforce to avoid overloading your staff

What is accuracy in data entry?

Accuracy in data entry refers to if the value entered and stored in a field is correct. To be correct, a data value entered must be correct and should be represented in a consistent and unambiguous form.

How to improve data entry accuracy?

  • Identify primary sources of inaccuracies
  • Perform regular analysis
  • Standardize processes
  • Monitor progress
  • Enable automation

Why is accuracy so important?

If data accuracy levels are low, insights will be inaccurate, and the decisions made to use it will yield poor results. This is why organizations should realize that data quality is more important that data quantity. Too much focus only on gathering as much information as possible, without thinking about if it’s correct and how it can be used – will never help.

Why is data accuracy important for overall data quality?

Do Organization Trust their Data

Accuracy describes the degree to which given data is correct. And, it is the same data which is used to glean actionable insights. Companies with data, as their best asset, can improve their everyday decision making. This is not applicable only for the top management; instead it applies from bottom to the top. Now if decisions are made with help of data with poor accuracy, the insights will be lacking and the decisions it will impact will be disastrous.

This is one of the reasons why organizations should consider data quality over data quantity. Too much of focus only on collecting data without thinking about the quality of that data will not help them succeed in today’s data driven markets. The second reason is inaccuracies resulting in poor data quality are a barrier for organizations to take that leap towards digital transformation. Every 8 out of 10 Machine learning (ML) and artificial intelligence (AI) for modern data governance projects are withheld due to dirty or low quality data. 96% of these projects have run into data quality problems and data labeling required to train AI.

Data entry errors cost millions of dollars in time & efficiency to organizations

Data entry done without appropriate skills and adequate technological tools leads to errors. These errors may seem small but can cost organizations millions of dollars, time and efficiency to correct.

5 common data entry errors that affects businesses:

  • Ambiguous data
  • Value representation consistency
  • Change-induced inconsistencies
  • Valid values
  • Missing values

Learn more: How Automated Solutions Resolve Data Entry Errors

Tips to improve your data entry accuracy

Data entry errors make achievement of 100 percent data accuracy a herculean task for most of the companies. Errorless data entry and accurate data always has a bottom-up approach. Data management best practices can help organizations to identify inaccurate data; but not all the errors and inaccuracies are identified and rectified. The organization always has to ensure that the data entered is accurate and is readily available as and when required.

Conclusion

Impromptu data improvements with immediate payoffs are no rocket science, however keeping the business database away from inaccuracies and maintaining that stature is a long-term process that needs dedication. Also, organizations are equipped to fix only a small fragment of what they found due to time and skill impediments. Outsourced data entry companies equipped with required skills, experience and technology knowhow can rapidly transform vast volumes of your critical data into reliable business information.

Chirag Shivalker

About Author: heads the digital content for HabileData, a global data management solutions outsourcing company, rated as one of the top BPO companies in India. Chirag's focus has been on enterprise wide data digitization, data governance, data quality, and BI capabilities.